Nonparametric analysis of covariance

نویسندگان

  • Holger Dette
  • Natalie Neumeyer
چکیده

In the problem of testing the equality of k regression curves from independent samples we discuss three methods using nonparametric estimation techniques of the regression function The rst test is based on a linear combination of estimators for the integrated variance function in the individual samples and in the combined sample The second approach transfers the classical one way analysis of variance to the situation of comparing nonparametric curves while the third test compares the di erences between the estimates of the individual regression functions by means of an L distance We prove asymptotic normality of all considered statistics under the null hypothesis local and xed alternatives with di erent rates corresponding to the various cases Additionally consistency of a wild bootstrap version of the tests is established In contrast to most of the procedures proposed in the literature the methods introduced in this paper are also applicable in the case of di erent design points in each sample and heteroscedastic errors A simulation study is conducted to investigate the nite sample properties of the new tests and a comparison with recently proposed and related procedures is performed AMS Classi cation Primary G

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Dissertation : Nonparametric Quasi - likelihood in Longitudinal Data

Title of Dissertation: Nonparametric Quasi-likelihood in Longitudinal Data Analysis Xiaoping Jiang, Doctor of Philosophy, 2004 Dissertation directed by: Professor Paul J. Smith Statistics Program Department of Mathematics This dissertation proposes a nonparametric quasi-likelihood approach to estimate regression coefficients in the class of generalized linear regression models for longitudinal ...

متن کامل

Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for...

متن کامل

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

Nonparametric Test for Eigenvalues of Covariance Matrix in Multipopulation

We propose a nonparametric procedure to test the hypothesis that the j-th largest eigenvalues of a covariance matrix are equal in multipopulation. We apply the Mood test by using the principal component scores and deal the equality of eigenvalues with the equality of variance. We investigate the significance level and the power of test by simulation and show that this nonparametric test is usef...

متن کامل

Evaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function

In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...

متن کامل

Modeling spatial covariance functions

Choi, InKyung Ph.D., Purdue University, December 2014. Modeling spatial covariance functions. Major Professor: Hao Zhang. Covariance modeling plays a key role in the spatial data analysis as it provides important information about the dependence structure of underlying processes and determines performance of spatial prediction. Various parametric models have been developed to accommodate the id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000